International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011 64

AN IMPROVED WEB SERVICE DISCOVERY FRAMEWORK BASED ON SIMILARITY
MEASUREMENT AND QOS RANKING

R. Jeberson Retna Raj.1, Dr.T.Sasipraba.2

"Research Scholar, Sathyabama University, Chennai, India
2Professor & Dean, Sathyabama University, Chennai, India,
Email: "jebersonin@yahoo.co.in

ABSTRACT

Reducing the irrelevant web services and not missing the most relevant web services are the two complimentary
issues in web service discovery process. Due to the lack of support from Universal Business Registries (UBR) for
complex queries, web service search engine has been introduced to discover the pertinent web services.
Traditionally, web services can be discovered by keywords. Since the keywords are unable to bear the underlying
the semantics of the search query, operation based discovery has been introduced. Furthermore, clients search
interest often changed, we propose a model to discover similar web services based on QoS requirements. To
achieve this, find the degree of the functional component that matches with the search query can be computed,
and its respective QoS attributes that can be normalized by the proposed algorithm. These two factors can be
aggregated to provide overall score value for the web service. For a search request, the list of candidate services
will be provided to the client based on the degree of closeness with the search query. The system has been
tested with the real and synthetic data, and the test result shows very favorable results.

Key words: web services, QoS attributes, Normalization, web service discovery.

l. INTRODUCTION

Proliferation of web services paves a way for
many service providers implement their business
services using web services. Omnipresent of the
internet and technology provides incentive to the
service providers to create, locate and access required
web services regardless of platform. Since the web
service becomes the realization of Service Oriented
Architecture (SOA), developers relying on this
technology for its support on reusability and
interoperability [1]. Due to the increasing number of
web services in the internet for similar functionality,
identifying the pertinent web service to the client’s
requirement is a challenging research problem in
services computing paradigm [2]. Due to the vigorous
proliferation of web services, locating the desired web
service for a given request has become a very valuable
task [3]. Due to the availability of a large number of
web service providers, it is often the case that a large
number of services are available for a given request.
The selected service must incorporate all the requested
operation. Reducing irrelevant services and not missing
the most relevant services are the two complementary
issues about the selection process. Current research
shows most of the services implemented by. NET web
service. For a request, more than hundred service

providers readily available in the internet to satisfy the
request. Due to the failure of the public registries,
search engines are the alternate tool to discover web
services. Generally, web services can be searched by
keywords [4]. If the searched query does not contain
in the part of web service name exactly, then the
service may not be retrieved. [5] Furthermore, the user
not able to specify their search request more precisely
rather than by keywords [6]. Traditional web search
engines devoted to website and not for web services
as they are unable to articulate the search query well
[10]. As the semantics of website and web service are
differs, we argue that a dedicated web service search
engine to discover the pertinent web service.
Furthermore, a client want to search a web service,
current systems are unable to deliver the requested
task accurately. So we advocate that the system assist
the user to discover web services based on QoS
requirements. Our contribution is in two fold, first to
store all published web services in the service pool.
Extract the metadata such as service, portType,
message, operation elements. Compute the quality of
web services for response time, throughput, availability
and reliability using the metrics. Secondly, compute the
functional and non functional evaluation by the
proposed algorithm. Aggregating the functional and non

Jeberson : An Improved Web Service Discovery Framework... 65

functional values to provide the rank value so that the
client can get the web service based on QoS
requirements. The gist of this approach is the consumer
can specify the search request as input operation and
its expected output operation. Furthermore, the client
can specify the required QoS attributes. Based on the
request, a list of candidate services which are matched
with the request will be provided to the client for setting
weights over the QoS attributes. Since this search is
based on input and output operations, the unwanted
services will be filtered from the list. So how wisely
select the appropriate web services for the benefit of
the customer is a key issue to the selection process.

The paper is organized as follows. The brief
introduction of web service discovery and the related
work done in the proposed technique is discussed in
section Il. Section Il describes the proposed QoS
driven web service discovery and ranking process for
efficient web service selection. Section IV discusses
with the experimental results of a search query based
on keyword search as well as operation based search.
Finally, section V end with conclusion.

Il. WEB SERVICE DISCOVERY

Locating the desired web service is an important
research issue in services computing paradigm. Due to
the advent of the internet and proliferation of web
services which makes internet as a huge resource
library for a client to locate, select and compose
business applications. Furthermore, competition among
web services is ready to satisfy a client request. A
business process consists of participating an individual
or group of web services to execute a task. Service
discovery is an integral part of semantic web services.
Since traditional methods don’t support the Quality of
search, the need of the hour is a system which assists
the user to select the pertinent web service for a client
request. Selection of web service becomes challenge
when the composition of the web services is to be done
automatically.

A. Limitation of UDDI and search engines

Universal Business Registry (UBR) terminates
their registry operations from early 2006 for public use.
Due to the failure of the UDDI, the clients are forced
to use an alternate search method such as search
engines and crawlers etc. During the discovery process
in UDDI, a client may experience several setbacks.
Most of the UDDI are seldom updated and significant

parts of information in these registries are out of date
[18]. Due to the lack of semantics descriptions of web
services, the results returned by the registries are
effectively inadequate. Universal Business Registries
(UBR) such as Microsoft, SAP, IBM are close their
registry operations for public use. The reason behind
their shut down is cited as the goal is achieved. The
entries of the web services are scaled up day by day
basis so that duplication of entries may inevitable.
Generally, UDDI is based on keywords [4]. The
consumer has to do view-select-request queries several
times. These enormous hardships may hindrance the
consumer to locate the desired web service [5].
Moreover, once the desired web service is not available
in the internet, the search process again restarted.
Recent survey shows more than 53% of the UBR
registered services are invalid. This kind of procedure
leads to less usage of UDDI and relying on web service
pool. Searching web services using search engines is
also based on keyword which is inherently impractical
for discovery process. Search engines do not
understand the web service functionality outlined in the
description file [16].

The idea behind the keyword based search is
that the keyword involved in the query which matches
them with web service description. Since the keyword
based searching unable to match the underlying
semantics of web service, they may miss the relevant
results and returns irrelevant one to the client. User
unable describes the search request more precisely
than keyword is another limitation of keyword search.
Furthermore, keywords do not suffice for accurately
specifying user's information needs. Web services are
developed and maintained by their provider. Suppose
the service is modified or no longer available, the
service consumer have to repeat the discovery process.

B. Operation Based Search

A web service is a reusable software component
interacts over systems in a heterogeneous
environment. Web services can be discovered, located
and invoked across the internet. A web service consists
of interface description and implementation description
used to expose the service functionality. Interface
description containing the type and definition elements
and implementation definition containing port type,
binding and service elements. A web service consists
of several operations. Each operation deals with
individual task assign to them for execution. The

66 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

operation contains an asset of parameters. These
parameters are structured in a hierarchy by using
complex types. The operation based search is to
provide the search result more accurately than the
keyword based search. Since the web service operation
is going to be as part of the application, the user would
like to prefer operation based search than the keyword
based search.

C. Web service discovery classification

Current discovery approaches can be classified
into two categories namely syntactic discovery and
semantic discovery. Syntactic discovery incorporated
the techniques such as UDDI based search, text
document based search, schema matching and
software component matching. Semantic-based
discovery is mainly based on ontology. Generally, UDDI
is based on keyword search. Seldom updating of the
service providers information and simultaneous access
will not be encouraged are the serious limitation of
UDDI based search. Typically, text document search is
widely used in search engines and web pages [6]. This
is also based on keywords. Search engines are unable
to articulate and bear the underlying semantics of the
searched query so that search engines are inherently
impractical for web service discovery. The functionality
of schema matching is based on to capture clues about
the semantics of schema and suggests matches based
on them [7][8]. Operations are typically much more
loosely related to each other than are tables in a
schema and each web service in isolation has much
less information than a schema. Finally, software
component matching has defines the problem of
examining signature (data type) and specification
(behavior) matching [9]. It is mainly for software reuse.
For Semantic discovery, Ontology based discovery is
one of the approach for discovering web services [5].
The ontology based discovery approach suffers from
performance problems due to the use of ontology
reasoners. Furthermore, constructing ontology as a
semantic backbone for a large number of distributed
web service is really not easy. These are the major
setback for ontology based discovery. All the
aforementioned approaches don’t deal with QoS based
operation search. Thus the proposed QoS based web
service discovery stress the need of searching a web
service based on QoS based input/output operation.

D. Overview of the proposed Service Discovery

Proliferation of web services is expected to
introduce competition among large number of web
services that offer similar functionality. Selecting highly
configurable web services in terms of performance is
of paramount important for web service selection. Since
the keyword search unable to provide the accurate
search result for a client request, operation based
search has been introduced. In this approach, the
single similar and composite operation which
incorporates with the QoS requirements can be
searched. The idea is to retrieve the metadata of
input/output operation from a WSDL and apply a mining
algorithm used to measure the co-occurrence of terms
and cluster the terms into a set of concepts, and
leverage these concepts to determine the similarity of
inputs/outputs operations.

Assume all the web services are published. The
web service crawler collect the list of web services from
the internet and stored in the service pool. The WSDL
parser extracts the metadata from the WSDL such as
service name, operation name, input, output type,
message and it can be can be stored in the service
pool. QoS attributes of a web service is normalized by
the proposed algorithm and the appropriate match
score value is stored in the service pool. Whenever a
request has been performed, QoS consultant selects a
list of pertinent candidate web services that are
matched with the input/output operation will be provided
to the client.

E. Related Work

QoS based web service discovery is an important
solution for filtering and selecting between functionally
equivalent web services stored in registries or other
repositories. Unfortunately, Functional discovery of web
service is not adequate and may circumvent the client
interest, as there may be hundreds of equivalent web
services. Users further must be assisted in selecting
the appropriate web service for their needs. Recently,
several works has been done in QoS based web
service discovery. Xin Dong Et al., proposed “Similarity
Search for Web Services approach for web services
discovery” [24] for searching web services. They
construct a search engine named as woogle used to
search similar services. The clustering module used to
group the similar web service operation and generate
a meaningful concept. However, the work is not
supported the QoS based search for a user request.

Jeberson : An Improved Web Service Discovery Framework... 67

Xuanzhe Liu [6] proposed a model for homogeneous
web service discovery. The search model is based on
input/output operation. Web service operations are
extracted from WSDL file and stored in the service
pool. The Single similar and composite operations are
grouped based on terms and leverage these terms into
concepts by the clustering algorithm. The Composite
operations can be grouped by agglomeration graph
algorithm. Furthermore, the service provider changes of
web service contents can be updated by atom feed.
In[17], a web service search engine WSExpress has
been introduced. The functional value and the non
functional values are aggregated to get the overall
score value used to index the web services for a
search query. Authors in [23] proposed URBE(Uddi
Registry By Example) for web service retrieval model.
The model is based on bipartite graph clustering the
related services for retrieval process. However, the
model doesn’t incorporate with the client QoS
requirements.

ll. PROPOSED QUALITY DRIVEN WEB SERVICE
DISCOVERY

QoS deals with a set of nonfunctional properties
of a web service that encompasses performance
characteristics. As the user more concern about the
performance of web service they use, QoS can be
used to discriminate functionally similar web services.
Discovering a web service according to the client
requirement is a complex task as many services are
available to satisfy a request. Search a service using
keyword which circumvents the user to get an
appropriate web service instead of offering a less
specific one. Moreover, irrelevant information may be
provided to the client which leads to take a vague
decision as which one will be the most suitable one.
To alleviate these difficulties, QoS driven web service
discovery has been introduced. The gist of this
approach is to provide the required web service based
on users QoS requirements. Figure 1. Shows the
architecture of QoS based web service discovery
process.

The QoS driven web service discovery model is
to search a web service according to the client
requirement. The proposed system assists the client to
search web services based on input/output operations.
The web services of single similar and composite
operations can be searched based on user's QoS
requirements. The system allows the user to specify

the input operation and the output operation incorporate
with the QoS requirements. The functional details are
used to identify the operations and the QoS
requirements will be normalized to calculate the merit
of non functional requirements. Matchmaking algorithm
used to match the client request with the available
services.

—— Web service
Search :
Discovel
=» Hander | } ___ v
‘_ L= mmen T o

aul R \m o
[=)
I AN Service pool ,'|

Different Quality
Web Services

O
c.ft ——F e | [0 o

|
|
|
|
|
|
|
|
|
|
|
|
EvaIAuation 00 :
|
|
|
|
|
|
|
|
|
|
|

I
| 4 s
W : QoS tore O
Web service |
~ I T Store
T I Similarity —{ | ©
| Evaluation 0 0
Crawler |
I ? Store O
I WSDL I 2 5
: Parser »
|
|
L

Providers

N I Stors ™!
Fig. 1. Proposed QoS driven web service discovery
architecture

The architecture of the proposed QoS driven web
service discovery has been shown in Figure 1. The
web services descriptions are searched by a crawler
and stored the WSDL in the database. The QoS
handler stores all the QoS attribute values and using
the normalization algorithm to normalize the values and
store it in service pool. The WSDL parser extracts the
Meta data from a WSDL file and stores it in service
pool. The cluster agent cluster the terms and generate
the concept which will be stored in a service pool. The
feed manager used to index the web services.
Whenever a client performs a search via user interface,
the consultant selects the pertinent web services to the
client's QoS requirements. The Service pool manager
consists of all discovery components including similarity

68 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

cluster. The proposed architecture consists of web
service Meta data extraction and clustering module
which extracts the input/output operation from WSDL
file and store these Meta data into the service pool.
The extracting features from WSDL documents will be
done in a offline process. The QWS Dataset [21] [22]
consist of 2507 web services WSDL files are taken for
experiment, the input and output operations are
extracted from the service descriptions. The extraction
process used in [14] can be followed for extract the
metadata such as web service name, type, ports,
operations, input/output name and stored in a service
pool.

Web Service Metadata extraction and Clustering

The Meta data requirement of a web service is
shown in table |, the Meta data can be extracted from
WSDL file and stored in the service pool. For example,
Table Il shows the Meta data of currency converter
web service and its equivalent location is shown in
Table lll. The idea is to identify the terms and cluster
the terms into concepts, and leverage these concepts
to determine the similarity of inputs/outputs operations.

F. Service Meta Data Model

A web service can be defined in terms of Meta
data as follows.

WS = {Name, Message Exchange, Data types,
set of operations}}

Where operation = {no. of operation, input, output}

The operations can be described by name and
text description in WSDL defined by port Type element
and associated with atleast one input message and one
output message.

Each input and output contains a set of
parameter for an operation defined by the message
element and type element used in the message.

A message has optionally m parts m>=1(atleat
one)

A simple wsdl structure for simple operation is
shown in figure 2.

- <s:complexType>
- <s:sequence>
<s:element minOccurs="1" maxOccurs="1"

name="FromCurrency" type="tns:Currency" />,
<s:element minOccurs="1" maxOccurs="1"
name="ToCurrency" type="tns:Currency" />

</s:sequence> Complex type
</s:complexType> P P

- <wsdl:message name="ConversionRateHttpGetIn">
<wsdl:part name="FromCurrency" type="s:string" />
">

<wsdl:part name="ToCurrency" type="s:strin
</wsdl:message> Message

- <wsdl:portType name="CurrencyConvertorSoap">

- <wsdl:operation name="ConversionRate">
- <wsdl:portType name="CurrencyConvertorHttpPost">
- <wsdl:operation name="ConversionRate">

Port Type

Fig. 2. Excerpts from Currency converter web
service WSDL

Service pool

The structure of the service pool is represented
as the vector of SP={Service Name, Profile, Op,
Input/output, list of QoS} Table 1 shows the tag entries
which are used in service pool.

Table 1. Naming rules of Service Pool

Tag Naming Rules

Service Name | The service name of the web service

Profile The domain and functionality description of
the service providers in the pool

Op The operation name of the web service

Input The input name can be used for client search

Output The output name can be used for client
search

QoS values List of QoS attributes

Table 2. Example of Generating a Pool WSDL

Name Input Output operation
WS4 | Currency get getRate get
Rates Currencies Currencies
List List
WS, [DOTS Convert | Convert To [ConvertCurren
Currency From Currency cy
Exchange Currency
WSs [Currency From To Currency | get
Rates Currency | Code Conversion
Code
WS4 | Currency From To Currency | Conversion
Convertor Currency Rate
WSs [Currency src dst Currency |[get Currency
Server Web | Currency Value

Service

Jeberson : An Improved Web Service Discovery Framework... 69

Table 2 described about 5 currency converter
web services with similar functionality. The metadata of
service pool consist of name, input, output, and
operations, which are derived from WSDL file. The
WSDL file definition, message, port Type, binding and
service elements. To search a web service based on
operation, we require the extracted features of name
of the service, input/output name, and operation
included in port type element and stored in service
pool. Table 3 shows the 25 different web services
retrieved by the crawler.

Table 3. Functionally Similar Web Services -
Currency converter

Currency converter Web service URLs -WSDL (25 web services)
http://ws.strikeiron.com/HouseofDev/currencyrates?WSDL
http://ws2.serviceobjects.net/ce/CurrencyExchange.asmx?WSDL
http://ws.strikeiron.com/HouseofDev/currencyrates151?WSDL
http://www.webservicex.net/CurrencyConvertor.asmx?wsdl
http://www.currencyserver.de/webservice/currencyserverwebservice.asmx?WSDL
http://www.webservicex.com/CurrencyConvertor.asmx?wsdl
http://currencyconverter.kowabunga.net/converter.asmx?WSDL
http://glkev.webs.innerhost.com/glkev_ws/Currencyws.asmx?wsdl
http/www.currencyserver.de/webservice/currencyserverwebservice.asmx?WSDL
http://allysoft.ru/BScurrency/currency.asmx?WSDL
http://fx.cloanto.com/webservices/CurrencyServer.asmx?wsd|
http://www.atlaz.net/webservices/GetCurrencyExchange.wsdl
http://server1.pointwsp.net/ws/finance/currency.asmx?WSDL
http:/www.freewebs.com/jimmy cheng/CurrencyExchangeService.wsdl
http://ws.soatrader.com/gama-system.com/1.0/CurrencyExchangeRates?wsdl
http://tvazteca.viajez.com/WServicesDev/CurrencyRequest?WSDL
http://ws.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL
http://ws2.serviceobjects.net/ce/CurrencyExchange.asmx?WSDL
http://www.petermeinl.de/CurrencyConverter/CurrencyConverter.asmx?wsdl
http://currency.niekutis.net/currency.asmx?wsdl
http://cs.daenet.de/webservice/CurrencyServerWebService.asmx?WSDL
http:/www.xignite.com/xCurrencies.asmx?wsdl
http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?WSDL
http://ws.strikeiron.com/ForeignExchangeRate3?WSDL
http://ws.soatrader.com/baydonhill.com/0.1/Currency?wsdl

G. Concept clustering

To measure the similar and co-occurrences of
term can be identified using association rules.
Obtaining the association rules for the term set, we
then try to cluster the concept set. Agglomerating
algorithm [6], this is used to generate the concept from
terms. i.e. Input/output, data types. The over frequent
terms and infrequent terms are filtered in this step.

H. Predicting the Similarity

The similarity measurement of web service
operation can be achieved by employing traditional

TF/IDF (Term Frequency/Inverse Document Frequency)
measurement. A web service operation op can be
represented by three tuple vector. For a given two
operations we can find the similarity by combining the
similarity of each individual elements respectively.

1. By using the traditional TF/IDF measurement,
estimate the text description of operation and the
web services the operation belong to.

2. Estimate the similarity of input and output by
considering the underlying semantics the
input/output parameter cover.

Input =<min, CI Where min - text description
of input names and concepts that associates with

Similarly the output Output =<nout, Co >

3. Find similarity of input in the following two ways.

Evaluate the similarity of the description of input
names by TF/IDF.

Split min into a set of terms. We should filter the
terms related to outputs (eg. “ZipCode” in the
input “City Name ByZipCode”). Then we replace
each term with its corresponding concepts, and
then use the TF/IDF measure.

The output can be processed in a similar fashion.
Now, we define the similarity between two operations
op;, op; the following formula

Sim (op; op)) = 1SIM(Nyy; Ny + WoSim(Ngi, Noy)
+ w3Sim (input;, input) + w,Sim(output;, output)

Here, wi(i=1,2,3,4) is the weight assigned to
similarity of operation text description, input and output,
X wi=1. Then, we define the two operations that are
similar as follows:

Given two operations op; op; a threshold w; then
claim that op; op; are similar operations if
Sim(op; op) = w;

I Constructing Service Aggregation Graph

Two service discovery types are specified against
a given request of input and output. We are follow the
same approach used in [6] and the step is as follows,

70 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

1. A list of similar single operations that can accept
the request and

2. A sequence of operations that can be composed
to fulfill the request.

In our approach, we process these two
requirements within a directed graph , G=<V, E>, in
which:

1. Vs the vertex set. Each vertex in the graph G
corresponds to an operation in our data set;

2. Eis the edge set. Each edge corresponds to the
input or output of the vertex.

To find single similar and composible operation
in the web service pool, a “Service Aggregation Graph”
(SAG) algorithm can be used [6].

J. QoS based Web Service discovery process

Generally, the UDDI and search engines are
used to search the services by keyword. Since the
keyword search is not able to extract the underlying
semantics of the searched query, operation based
search has been introduced. The discovery process
completed only if the QoS based requirement
incorporate with operation based search. Thus QoS
driven web service discovery approach efficiently
selects the required web service. The system assists
the user to specify the input operation and the output
operation along with the QoS requirements. QoS values
of the web service such as response time in
millisecond, throughput in seconds, cost in dollar, both
reliability and availability in percentage. These
heterogeneous values such as millisecond, second and
percentage can be normalized by the simple weighted
average method. The range of the normalized value is
between [0, 1].

We have taken four metric for QoS assessment.
First metric measures the average execution time of a
web service, it takes the values from the integer set
[1, =], while its measurement unit in milliseconds. The
second metric measures the average throughput of a
web service, its values also belong to the integer set
[1, =], whereas its measurement unit in seconds. The
next two metric measures the average availability and
reliability of a web service, it takes the real values and
is computed as percentage. Table 4 consist of QoS
web service parameters which are used in [19] such

as response time, throughput, reliability and availability
that can be retained in the proposed method.

Table 4. QoS Attributes for web service
selection

Unit of
measurement

Millisecond

Parameter Definition

Time taken to

send a request
and receive a

response

Total number
of invocations
for a given

period of time

Ratio of the
number of
error messages
to total
messages

Number of
successful
invocations/total
invocations

Response time

Throughput Invocations per

second

Reliability Percent

Availability Percent

Let S be the set of preselected services,
describes the utility score decreased if the QoS value
is increased. Lower is better policy can be maintained.
Here, the response time, throughput and cost are come

under this category. QOS"™MM represents the
positive QoS attribute such as availability and reliability.
If the QoS values are increased then the utility value
also in a increased direction. Higher is better policy is
taken under this category.

l:fQi c QOSDecrement (qi)r < q; (S)
if 0; € QOS™™ ™™ (g;), 2 ¢;(s)

To illustrate matchmaking step, consider five
instance of web service WS1, WS2, WS3, WS4, WS5
with respective offers: these QoS values are normalized
by equation (2)

WS, (QoS) = {205.33ms, 3.5s, 80, 60 }

WS, (QoS) ={104.75ms, 19.4s, 89, 73 }

WS; (QoS) = { 126.25ms, 3.65, 100, 60 }

Jeberson : An Improved Web Service Discovery Framework... 71

WS, (QoS) ={ 648ms, 0.6, 92, 73 }
WS; (QoS) ={ 539.29ms, 6.25, 63, 80 }

K. Normalization

At this stage all the eligible services offer a
quality level that is equal to or higher than the
requested and come at the affordable costs. We will
thus evaluate service offers in terms of the gain in
quality and cost that is proposed. Let Q and C be the
evaluation metrics of gains in quality and cost
respectively. We here by define g as scalar values
between 0 and 1.

We first evaluate the gain in each quality
dimension. For each, we define two parameters

(@max and (Qin as follows

(@) max = {maxses q:(s) ifQ; € QoS™erement
(g,), if0, € QoS Pecrement 0

(9) min ={mmses q;(s) ifQ; € QoS
(4;), if0, € QoS Pecrement

The scaling function is defined as Utility;(g; and
takes values in [0, 1]. Utility(g) is increasing for
QoS™rement attributes and
QoSPecrement atibutes.

decreasing for

q; —(4;) min
(41) max = (4i) min
(9) max — 4
(91 max —(Gi) min

1 (i) max — (@) min

lfQi c QOS Increment

Utility; (q;) = if0; € QoS Decrement (2)

We can easily show that for all i=1...N,
Utility; ((g),) =0. We now derive the scalar metric Q

from the vector (Utility(q)), W= (wy), (W), ... denotes
consumer’s quality preferences. Where 0< W<1 and
Shoq W=,

The rank value of the web service can be
calculated as

n
Rank= Utility; (g * W, .. (3)

/

IV. EXPERIMENTAL RESULTS

Discovering a web service according to the client
requirement is an elusive task as similar services are
ready to satisfy a request. To alleviate the difficulties,
QoS driven web service discovery has been introduced.
The important elements which are participated in the
message exchanges are service consumer, service
provider, service pool manager, and the feed manager.
The Feed manager used for subscribing the Service to
the client. The system user interface allows the service
provider to register their services. For example,
Webservice.net, it successfully added it to the service
providers list. The WSDL parser extracts the Meta data
such as name of web service, input/output operation,
web service operation from WSDL file. For example,
as stated in table 1 for currency converter web service,
name of the web service is “Currencyconverter”, input
message operation as “Fromcurrency”, output message
operation as “Tocurrency” and the operation name as
“ConversionRate”. These Meta data are extracted by
the WSDL parser and stores it into the Service pool.

Whenever a request comes, the consultant
communicates the service pool manager for selecting
a suitable web service. The service pool manager finds
the single similar and composite operations by using
the clustering algorithm and agglomeration graph
algorithm. Based on this computation, the related
concepts are grouped and the list is provided to the
client for setting weights over QoS attributes.

L. Keyword search

As service providers publish the web service
content on the internet using standard WSDL interface,
people from anywhere can access the web service on
any platform and any operating system. The system
interface allows the user to specify the keyword and in
response the system returns the list of matched service
to the client. For example, the keyword “currency” , the
services which are matched with the searched query
currency will be returned. Here all the 25 web services
are returned as a search result.

The search engines are searched by using a
plain textual description, which describes the general
kind of service that is offered, for example, service
related to “weather forecasting” or “travel agency.” As
the keyword search not able to provide the underlying
semantics of the web service search operations, we

72 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

advocate the homogeneous service
mechanism for searching a web service.

discovery

M. Input/outout operation based search

Service Pool contains the Meta data information
of the WSDL file. It's not only maintains the operations
with similar inputs/outputs, but also the “hyperlink’
between the operations. This approach combines
multiple sources of evidence to determine the similarity.
The search domain of the operation that captures the
purposed functionality such as
“GetWeatherByZipCode,” “SearchBook,” or
“QueryAirplaneTimetable.” Finally, we find the data type
deriving from the input/output. The data types do not
relate to the low-level encoding issues such as integer
or string, but to the semantic meanings such as
“weather,” “zipcode,” etc. Service Pool can return two
types of results: the operations with similar inputs and
outputs, and the sequentially composible operations.
The component Service Pool analyzes each WSDL file,
filter the irrelevant information, and retrieve terms from
the input/output data types.

The service consumers can search the
homogeneous Web services within their Web browser.
The users can type in their desired input and output
names and get the returned results. It shows the similar
single operations and composite operations into two
parts. The similar operations are highlighted as well as
their inputs and outputs, in the description of the Web
services they belong to. The composite operations are
listed in a tree, where the upper node’s output can be
accepted as input by the lower ones. The returned
results are sorted by their similarity against the
requests. And the user can able to subscribe the
service.

Figure 4 shows the search for similar services
based on input and output operations. So the system
will return the single similar operation against the given
input and output operations. For example, getting
similar services, the request contains input operation
GetCurrency and respected output parameter
GetCountries. The search has been performed and the
list contains the requested web services.

The following figure 3 shows the user interface
for searching composible operations web services.
Composible in the sense the output of the service
operation will be the input of the others in a chain
manner. This type of functionality has been tested by

the sample search data as Get Currency and requested
output operation is GetCountries. By getting this data
a search has been conducted and the composible
operaration based services has been listed and which
is shown in figure 6. The resulted service operation
agiaint the given request is GetCountries,
GetCurreuncyByCountry,
GetCurrencyCodeByCurrencyName. This output has
been shown in a tree structure format.

Fig. 3. Searching Composible operations

For specifying the composite search operation
Get Currency, the GetCountries composite web service
has been open for invocation. By invoking GetCountries
web service another web service
GetCurrencyByCountry has been opened. By specifying
India as a country name the details of the currency
details will be provide in a XML description by calling
GetCurrencyCodeByCurrencyName web service as this
invocation in a chain and interrelated, this kind of
search service is composite search is rightly justified.

Subscribing the Service

In ServicePool, the Feed Manager component
attaches the metadata to the Atom feeds and indexes
the feeds to the corresponding Web services by using
the standard Atom publish protocol. Here, it is
necessary to make the binding between the Atom feeds
and WSDL, to ensure the consistency with the original
Atom syntax and semantics. Due to the functionalities
that Service Pool provides, we adopt two feed types.
The first one is the Web service entry, which is used
to subscribe exactly one Web service. This element
represents Web service by binding the metadata of the
Web service to an Atom feed. Figure 4 shows

Jeberson : An Improved Web Service Discovery Framework... 73

subscribing web service to the client. The system has
been tested with the subscription of data.

@ SET
i Start] o Homogeosas... | i el RIS =)ol ok, |) ot Report.. | 8 Windows bt [[8 ServicePoul . U wttied-part | [« o7 1@ S 250

Fig. 4. Subscribing a web service using RSS Feed

QOS based discovery

Here the system is tested for searching the
service based on Quality of service parameters. The
parameters considered here is Response time,
Throughput and Availability and Reliability for selecting
optimal web service. The QWS dataset can be used
to validate the proposed system [18][20]. These QoS
values can be measured by standard benchmark tools
[21]22].

Table 5. The QOS values for 5 Functionally
Similar Web Services

Response Availability | Reliability
. . .. [Throughput
Service | time (Milli (Second) (Percentage | (percentage
Second) %) %)
WS1 205.33 35 90 60
WS2 104.75 19.4 89 73
WS3 126.25 3.6 100 60
WS4 648 0.6 92 73
WS5 539.29 6.2 63 80

Thus 5 different services of CurrencyConverter
web service are registered with varying QoS Values.
Table 5 shows the QoS requirement of a
currencyconverter web service.

A user want to search the web service by
input/output operation name means, they can use the
exclusively designed interface along with QoS
requirements. The system allows the user to specify
the web service by input/output operation and QoS

attribute he is looking for can be made through the
user interface as a search query. The QoS attributes
such as response time, throughput, reliability and
availability are normalized and a match score value will
be identified and it will be compared to the available
web services. The highest matched services will be
provided to the client for setting preference over QoS
attribute. Table 6 show the normalized value getting
from equation (2).

Table 6. Normalized QOS Values

Service | nesponse | Throughputi , ..-vility | Reliability
time

WS1 0.81485 0.84574 0.72972 0

WS2 1 0 0.70270 0.65

WS3 0.96042 0.84042 1 0

WS4 0 1 0.78378 0.65

WS5 0.20011 0.70212 0 1

The client has set weightage for all the QoS
parameters varying on its importance to him [0,1].
Based on these weightages the rank value of the
services is evaluated using equation (3).

If the user assigned weight to each QoS attribute
as {0.8,0.7,0.7,0.8}, the utility value can be represented

by
0.8148 0.8457 07297 0

1 0 0.70270 0.65
(0.8 0.7 0.7 0.8) | 0.9604 0.8404 1 0
0 1 0.7837 0.65

0.2001 0.7021 0 1

0.6518 0.5929 05107 0 0.4388
0.8 0 0.4918 0.52 0.4529

=| 0.7683 0.5882 0.7 0 |=| 05141
0 0.7 05485 0.52 0.4421
0.1600 0.4914 0 0.8 0.3628

Table 7. Rank Value for Web Service Using
Proposed Ranking Algorithm

Service Rank value
WS3 0.5141
WS2 0.4529
WS4 0.4421
WS1 0.4388
WS5 0.3628

74 International Journal on Information Sciences and Computing, Vol. 5, No. 2, July 2011

The result is evaluated by weighted sum of all
normalized QoS parameters and the final rank value is
evaluated. According to this the rank value will be
provided to the client from higher to lower order. So
the recommendation will be based on higher is better
can be followed.

A. Performance Analysis

In general, Web service discovery is based on
keywords. Due to this search the user can get relevant
as well as irrelevant result also. In the proposed
system, the search is based on input and output search
So that the consumer can get the relevant web
services.

The following table 8 shows the comparison
between keyword based search and operation based
search mechanisms.

Table 8. Comparison between Keyword search
and operation based search

Keyword| Input &
Output

Keyword : Weather 2 1

Input & output : weather
conditions (i/p)

Get weather (o/p)
Keyword : Currency 8 4

Input & output :
Currency details (i/p)
Get cities by country (o/p)

Keyword : Books 7 4

Input & output :
Author (i/p)
Get Books (o/p)

Search Operation choice

Comparison Chart

M Keyword

= Input & Output

1 2 3 4

Keyword and Input & output

No of Operations Returned
OFR NWRWUOGONOWWY

The Following figure 5 shows the Comparison
Chart for Keyword Search and Input/output based
Search

V. CONCLUSION

Reducing irrelevant services and not missing the
most relevant services are the two complementary
issues about the selection process. These issues are
addressed and a recommendation framework for web
service discovery is elaborately presented in this paper.
The single similar operation and composite operations
are identified by the proposed method. Furthermore,
the similar terms are clustered and the concepts are

Fig. 5. Graph shows the difference between
keyword search and input/output operation based
search for weather and currency converter web

service.

obtained by clustering algorithm. The QoS
computations of web services are measured and using
normalization algorithm which provides rank values.
Whenever a search has been performed, the system
selects the list of matched services from the service
pool and provided to the client. The test bed result
shows that a sharp deviation between the keyword
based search and operation based search. The
proposed method incorporates with the client’s non
functional requirement which shows a promising result
to the searched query. In future, the agglomerative
algorithm can be replaced by hybrid hierarchical
clustering algorithm to reduce the incorrectly grouped
of object at an early stage can be alleviated.

REFERENCES

[1] Joyce El Haddad, Maude Manouvrier, and Marta
Rukoz “TQoS: Transactional and QoS-Aware Selection
Algorithm for Automatic Web Service Composition”,
IEEE Transactions on Services Computing, Vol. 3, No.
1, January-March 2010, pp.73-85

[2] Kyriakos Kritikos ~and Dimitris Plexousakis
“Requirements for QoS-Based Web Service Description
and Discovery’, |IEEE Transactions on Services
Computing, Vol. 2, No. 4, October-December 2009

[3] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis,
and Timos Sellis, “Ranking and Clustering Web
Services Using Multicriteria Dominance Relationships”,
IEEE Transactions on Services Computing, Vol. 3,
No.34, July-September 2009

[4] M. Brian Blake, “Knowledge Discovery in Services’,
IEEE Internet Computing, March/April 2009. pp.88-91.

Jeberson : An Improved Web Service Discovery Framework... 75

[5] M. Brian Blake, “Knowledge Discovery in Services
(KDS):Aggregating Software Services to Provide
Complementary Data”, IEEE Transactions On
Knowledge And Data Engineering

[6] Xuanzhe Liu, GangHuang, “Discovering Homogeneous
Web Service Community in the User-Centric Web

Environment”, ”, |IEEE Transactions on Services
Computing, Vol. 2, No. 2, April-dune 2009

[71 E. Rahm and P.A. Bemstein, “A Survey on
Approaches to Automatic Schema Matching,” VLDB J.,
vol. 10, no. 4, pp. 334-350, 2001.

[8] H.H. Do and E. Rahm, “COMA: A System for Flexible
Combination of Schema Matching Approaches,” Proc.
Very Large DataBase Conf. (VLDB '02), 2002.

[9] AM. Zaremski and J.M. Wing, “Specification Matching
of Software Components,” ACM Trans. Software Eng.
and Methodology, vol. 6, pp. 333-369, 1997.

[10] Al-Masri, E.; Mahmoud, O.H. Discovering Web
Services in Search Engines, IEEE Internet Computing,
May-June 2008 74 - 77

[11] Almeida, J.; Gongalves, M.A.; Figueiredo, F.; Pinto, H.;
Belem, F.; on the quality of information for web 2.0
services, |EEE Internet Computing, 2010 Issue:6
November-December 2010, PP:47-55

[12] Aliaksandr Birukou, “Improving Web service discovery
with usage data”, IEEE software,November/December
2007,PP:47-54

[13] George Zheng and Athman Bouguettaya, “Service
Mining on the Web”, IEEE Transaction on Services
Computing, Vol2, No.1, January-March 2009. PP:65-78

[14] Khalid Elgazzar, “Clustering WSDL Documents to
Bootstrap the Discovery of Web Services”, 2010 IEEE
International Conference on Web Services, PP:147-154

[15] Fangfang Liu “Measuring Similarity of Web Services
Based on WSDL”, 2010 |EEE International Conference
on Web Services, PP:155-162

[16] Yin Baocai et.al, “A Framework and QoS Based Web
Services Discovery”,|[EEE International Conference on
Software Engineering and Service Sciences (ICSESS),
2010 , PP:755-758.

[17] Yilei Zhang, Zbin Zheng, and Michael R. Lyu,
“WSExpress: A QoS-Aware Search Engine for Web

Services”, 2010 IEEE International Conference on Web
Services, PP:91-98

[18] Eyhab Al-Masri and Qusay H. Mahmoud, “Toward
Quality-Driven Web Service Discovery”, IT Pro
May/June 2008, PP:24-28

[19] Richi Nayak Bryan Lee “Web Service Discovery with
additional ~ Semantics and Clustering”, 2007
IEEE/WIC/ACM International Conference on Web
Intelligence, PP:555-558

[20] Al-Masri, E., and Mahmoud, Q. H., “Discovering the
best web service’, (poster) 16th International
Conference on World Wide Web (WWW), 2007, pp.
1257-1258.

[21] Al-Masri, E. and Mahmoud, Q. H., "QoS-based
Discovery and Ranking of Web Services", IEEE 16th
International Conference on Computer Communications
and Networks (ICCCN), 2007, pp. 529-534.

[22] Eyhab Al-Masti and Qusay H. Mahmoud |,
“Investigating Web Services on the World Wide Web”,
ACM, WWW 2008, April 21-25, 2008, Beijing, China,
PP:795-804.

[23] Pierluigi Plebani and Barbara Pernici “URBE: Web
Service Retrieval Based on Similarity Evaluation” IEEE
Transactions on Knowledge And Data Engineering,
Vol. 21, No. 11, November 2009, PP:1629-1642.

[24] Xin Dong Alon Halevy Jayant Madhavan Ema Nemes
Jun Zhang, “Similarity search for web services” VLDB
'04 Proceedings of the Thirtieth international
conference on Very large data bases - Volume 30

R.Jeberson Retna Raj is a research
scholar from Sathyabama University,
Chennai. Currently He is doing his
Ph.D in Computer Science and
Engineering in the area of Web
Services. His research interest
includes Service oriented
architecture (SOA), web services,
GIS web services etc. He had presented various
papers in national & international Journals and
conferences

